
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Oxygen Depletion in Arctic Lakes: Circumpolar Trends, Biogeochemical Processes, and Implications of Climate Change

doi: 10.1029/2022gb007616
AbstractPolar amplification of climate change has the potential to cause large‐scale shifts in the dissolved oxygen (DO) dynamics of Arctic lakes, with implications for fish survival, greenhouse gas production, and drinking water quality. While DO is also a sentinel of environmental changes of physical, chemical, and biological nature (e.g., ice cover, temperature, dissolved organic carbon, photosynthesis, and respiration), no synthesis exists of current knowledge of DO dynamics across the diverse freshwater systems of the Arctic. We thus conducted a systematic review of the literature that yielded DO data from 167 sites north of the Subarctic limit (based on vegetation zones), spanning 76 years and including 40 sites with time series. The compilation revealed insufficient observations for adequate representativeness of oxygen dynamics over Arctic ecosystem gradients. We described the main processes controlling DO budgets of Arctic lakes and tested relationships of summer oxygen depletion with maximum depth and latitude. The meta‐analysis showed that most sites with low O2 concentrations were shallow (<10 m) and situated toward the southern end of the latitudinal gradient. Permanently stratified lakes with deep, perennially anoxic basins were located toward the northern end of the gradient. By way of a conceptual model, we identified the direct and indirect drivers and mechanisms that lead to changes in oxygen budgets in the context of the warming Arctic. This comprehensive update on available data allowed us to suggest future research directions and recommend the use of moored instruments for continuous all‐season observations, combined with modeling, remote sensing, and paleo‐reconstructions.
- University Centre in Svalbard Svalbard and Jan Mayen
- University of Copenhagen Denmark
- University Centre in Svalbard Svalbard and Jan Mayen
- University of Copenhagen Denmark
meta-analysis, climate change, 550, Arctic lakes, dissolved oxygen, biochemical processes, 551, freshwater
meta-analysis, climate change, 550, Arctic lakes, dissolved oxygen, biochemical processes, 551, freshwater
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
