Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth's Futurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive Impact of Changing Siberian Wildfire Severities on Air Quality, Climate, and Economy: MIROC5 Global Climate Model’s Sensitivity Assessments

Authors: Teppei J. Yasunari; Daiju Narita; Toshihiko Takemura; Shigeto Wakabayashi; Akira Takeshima;

Comprehensive Impact of Changing Siberian Wildfire Severities on Air Quality, Climate, and Economy: MIROC5 Global Climate Model’s Sensitivity Assessments

Abstract

AbstractWildfires emit atmospheric aerosols, affecting climate and air quality. Siberia is a known source region of wildfires. However, comprehensive knowledge regarding the impact associated with particulate matter pollution due to Siberian wildfires on climate and air quality and their effects on mortality and the economy under present and near‐future warmer atmospheric conditions remains poor. Thus, we performed model sensitivity experiments (atmospheric model and coupled atmosphere‐ocean model settings) simulating the effects of changing Siberian wildfire emissions under the present and near‐future climate conditions, using the Model for Interdisciplinary Research on Climate version 5 (MIROC5). Increased Siberian wildfire smoke likely caused a cooling effect in broad areas of the Northern Hemisphere and worsened the air quality near the source and in the downwind region (i.e., East Asia). The more Siberian wildfires occur, the more air pollution is present in those regions, which likely increases mortality and welfare losses there. However, the total impact of changing temperature on the gross domestic product under present and near‐future climate conditions is ambiguous. Our comprehensive results on the air quality changes due to Siberian wildfires under present and near‐future climate conditions suggest that increased efforts to limit the aerosol impact of Siberian wildfires are crucial to prevent possible excess mortality and economic losses.

Keywords

Ecology, PM2.5, air quality, mortality, wildfire, socioeconomic impact, Environmental sciences, climate change, GE1-350, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research