Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropsychopharmacology
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sex- and subtype-specific adaptations in excitatory signaling onto deep-layer prelimbic cortical pyramidal neurons after chronic alcohol exposure

Authors: Benjamin A. Hughes; Todd K. O’Buckley; Giorgia Boero; Melissa A. Herman; A. Leslie Morrow;

Sex- and subtype-specific adaptations in excitatory signaling onto deep-layer prelimbic cortical pyramidal neurons after chronic alcohol exposure

Abstract

ABSTRACTLong-term alcohol use results in behavioral deficits including impaired working memory, elevated anxiety, and blunted inhibitory control that are associated with prefrontal cortical (PFC) dysfunction. Preclinical observations demonstrate multiple impairments in GABAergic neurotransmission onto deep-layer principal cells (PCs) in prelimbic cortex that suggest dependence-related cortical dysfunction is the product of elevated excitability in these cells. Despite accumulating evidence showing alcohol-induced changes in interneuron signaling onto PCs differ between sexes, there is limited data explicitly evaluating sex-specific ethanol effects on excitatory signaling onto deep-layer PCs that may further contribute to deficits in PFC-dependent behaviors. To address this, we conducted electrophysiological and behavioral tests in both male and female Sprague-Dawley rats to evaluate the effects of chronic ethanol exposure. Among our observations, we report a marked enhancement in glutamatergic signaling onto deep-layer PCs in male, but not female, rats after alcohol exposure. This phenomenon was furthermore specific to a sub-class of PC, sub-cortically projecting Type-A cells, and coincided with enhanced anxiety-like behavior, but no observable deficit in working memory. In contrast, female rats displayed an alcohol-induced facilitation in working memory performance with no change in expression of anxiety-like behavior. Together, these results suggest fundamental differences in alcohol effects on cell activity, cortical sub-circuits, and PFC-dependent behaviors across male and female rats.

Keywords

Male, Ethanol, Pyramidal Cells, Prefrontal Cortex, Rats, Rats, Sprague-Dawley, Interneurons, Animals, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
bronze