
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Northern forest tree populations are physiologically maladapted to drought

AbstractNorthern forests at the leading edge of their distributions may not show increased primary productivity under climate warming, being limited by climatic extremes such as drought. Looking beyond tree growth to underlying physiological mechanisms is fundamental for accurate predictions of forest responses to climate warming and drought stress. Within a 32-year genetic field trial, we analyze relative contributions of xylem plasticity and inferred stomatal response to drought tolerance in regional populations of a widespread conifer. Genetic adaptation leads to varying responses under drought. Trailing-edge tree populations produce fewer tracheids with thicker cell walls, characteristic of drought-tolerance. Stomatal response explains the moderate drought tolerance of tree populations in central areas of the species range. Growth loss of the northern population is linked to low stomatal responsiveness combined with the production of tracheids with thinner cell walls. Forests of the western boreal may therefore lack physiological adaptations necessary to tolerate drier conditions.
Science, Climate Change, Forests, Article, Trees, Xylem, British Columbia, Geography, Q, Models, Theoretical, Pinus, Adaptation, Physiological, Carbon, Droughts, Oxygen, Plant Stomata, Algorithms
Science, Climate Change, Forests, Article, Trees, Xylem, British Columbia, Geography, Q, Models, Theoretical, Pinus, Adaptation, Physiological, Carbon, Droughts, Oxygen, Plant Stomata, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
