Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Climate Chang...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Climate Change
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leaf senescence exhibits stronger climatic responses during warm than during cold autumns

Authors: Heikki Hänninen; Sergio Rossi; Sergio Rossi; Stephanie Pau; Nicholas G. Smith; Jianquan Liu; Zhiyong Liu; +4 Authors

Leaf senescence exhibits stronger climatic responses during warm than during cold autumns

Abstract

A warmer world could extend the growing seasons for plants. Changes in spring phenology have been studied, yet autumn phenology remains poorly understood. Using >500,000 phenological records of four temperate tree species between 1951 and 2013 in Europe, we show that leaf senescence in warm autumns exhibits stronger climate responses, with a higher phenological plasticity, than in cold autumns, indicating a nonlinear response to climate. The onset of leaf senescence in warm autumns was delayed due to the stronger climate response, primarily caused by night-time warming. However, daytime warming, especially during warm autumns, imposes a drought stress which advances leaf senescence. This may counteract the extension of growing season under global warming. These findings provide guidance for more reliable predictions of plant phenology and biosphere–atmosphere feedbacks in the context of global warming. Autumn leaf senescence has later onset, higher phenological plasticity and a stronger climatic response under warm compared to cold autumns. While night-time warming delays senescence, drought induced by daytime warming advances it, which may lead to loss in growing season under global warming.

Country
Canada
Related Organizations
Keywords

Foresterie et sciences du bois, Climatologie et météorologie, leaf senescence, Plant phenology, global warming, Biologie et autres sciences connexes, climate change

Powered by OpenAIRE graph
Found an issue? Give us feedback