Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Ecology & Evo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Ecology & Evolution
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2023
Data sources: HAL INRAE
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resolving the intricate role of climate in litter decomposition

Authors: François-Xavier Joly; Michael Scherer-Lorenzen; Stephan Hättenschwiler;

Resolving the intricate role of climate in litter decomposition

Abstract

With approximately 60 Pg of carbon (C) released as CO2 annually, the decomposition of dead organic matter feeds the major terrestrial global CO2 flux to the atmosphere. Macroclimate control over this critical C flux facilitates the parametrization of the C cycle in Earth system models and the understanding of climate change effects on the global C balance. Yet, the long-standing paradigm of climate control was recently challenged by the so far underestimated environmental heterogeneity at local scales, questioning the conceptual framework of thousands of decomposition studies and accuracy of current predictive models. Using three complementary decomposition experiments at a European scale, we showed that macroclimate and litter characteristics largely control plant litter decomposition, reaffirming the role of macroclimate as an integrative decomposition driver through direct environmental control and by influencing co-evolving local plant and decomposer communities. Neglecting this latter indirect effect, commonly used standard litter types overrated micro-environmental control and failed to predict local decomposition of plot-specific litter. Our data help clarify a key question on the regulation of the global C cycle by identifying the relative role of control factors over decomposition and the scales at which they matter and by highlighting sources of confusion in the literature.

Countries
Germany, United Kingdom, France, United Kingdom
Keywords

580, 550, Climate Change, 577, ecosystem ecology, Carbon Dioxide, Plants, Carbon, Carbon Cycle, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, carbon cycle, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, forest ecology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research