
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Substantial cooling effect from aerosol-induced increase in tropical marine cloud cover

handle: 10871/136221
AbstractWith global warming currently standing at approximately +1.2 °C since pre-industrial times, climate change is a pressing global issue. Marine cloud brightening is one proposed method to tackle warming through injecting aerosols into marine clouds to enhance their reflectivity and thereby planetary albedo. However, because it is unclear how aerosols influence clouds, especially cloud cover, both climate projections and the effectiveness of marine cloud brightening remain uncertain. Here we use satellite observations of volcanic eruptions in Hawaii to quantify the aerosol fingerprint on tropical marine clouds. We observe a large enhancement in reflected sunlight, mainly due to an aerosol-induced increase in cloud cover. This observed strong negative aerosol forcing suggests that the current level of global warming is driven by a weaker net radiative forcing than previously thought, arising from the competing effects of greenhouse gases and aerosols. This implies a greater sensitivity of Earth’s climate to radiative forcing and therefore a larger warming response to both rising greenhouse gas concentrations and reductions in atmospheric aerosols due to air quality measures. However, our findings also indicate that mitigation of global warming via marine cloud brightening is plausible and is most effective in humid and stable conditions in the tropics where solar radiation is strong.
- School of GeoSciences The University of Edinburgh United Kingdom
- University of Leeds United Kingdom
- University of Reading United Kingdom
- Met Office
- Met Office Hadley Centre United Kingdom
550, Climate change, Atmospheric science, Atmospheric science; Climate change, 551
550, Climate change, Atmospheric science, Atmospheric science; Climate change, 551
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
