
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coffee-based colloids for direct solar absorption

AbstractDespite their promising thermo-physical properties for direct solar absorption, carbon-based nanocolloids present some drawbacks, among which the unpleasant property of being potentially cytotoxic and harmful to the environment. In this work, a sustainable, stable and inexpensive colloid based on coffee is synthesized and its photo-thermal properties investigated. The proposed colloid consists of distilled water, Arabica coffee, glycerol and copper sulphate, which provide enhanced properties along with biocompatibility. The photo-thermal performance of the proposed fluid for direct solar absorption is analysed for different dilutions and compared with that of a traditional flat-plate collector. Tailor-made collectors, opportunely designed and realized via 3D-printing technique, were used for the experimental tests. The results obtained in field conditions, in good agreement with two different proposed models, show similar performance of the volumetric absorption using the proposed coffee-based colloids as compared to the classical systems based on a highly-absorbing surface. These results may encourage further investigations on simple, biocompatible and inexpensive colloids for direct solar absorption.
- Department of Science and Technology Philippines
- Department of Science and Technology Philippines
- Polytechnic University of Turin Italy
- National Research Council United States
- National Research Council Italy
Glycerol, Copper Sulfate, Water, Biocompatible Materials, Coffea, Coffee, Article, thermal-conductivity; optical-constants; heat-transfer; nanofluids; temperature; water; nanomaterials; optimization; performance; receivers, Physical Phenomena, Models, Chemical, Solar Energy, Colloids
Glycerol, Copper Sulfate, Water, Biocompatible Materials, Coffea, Coffee, Article, thermal-conductivity; optical-constants; heat-transfer; nanofluids; temperature; water; nanomaterials; optimization; performance; receivers, Physical Phenomena, Models, Chemical, Solar Energy, Colloids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
