Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/p6...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/jk...
Other literature type . 2019
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil

عزز الوضع العميق لليوريا المتحكم في إطلاقها بشكل فعال من كفاءة استخدام النيتروجين وإنتاجية الأذن الطازجة للذرة الحلوة في التربة الفلوفية المائية
Authors: Wei Liu; Yousheng Xiong; Xiangyu Xu; Fangsen Xu; Saddam Hussain; Hanfeng Xiong; Jiafu Yuan;

Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil

Abstract

AbstractApplication of controlled-release urea (CRU) improves crop yield and nitrogen use efficiency (NUE) compared with conventional urea. However, the effectiveness of CRU differs with fertilization placement. A two site-year field experiment was carried out in fluvo-aquic soil in central China to study the effects of two N sources (CRU and urea) and three fertilization placements (band application between two corn rows at 0, 5, and 15 cm soil depths) on fresh ear yield and NUE of sweet corn. The soil inorganic N (NO3−-N and NH4+-N) concentrations at the soil layers of 0–20 cm and 20–40 cm, root morphology characteristics and leaf physiological functions were also measured during the sweet corn growth period. Results showed that the deep placement of CRU at 15 cm soil depth significantly increased the sweet corn fresh ear yield, total N uptake, and NUE by 6.3%–13.4%, 27.9%–39.5%, and 82.9%–140.1%, respectively compared with CRU application at 0 cm depth. Deep placement of CRU at 15 cm also increased the root morphology traits, gas exchange attributes, and soil NO3−-N and NH4+-N concentrations in 0–20 cm and 20–40 cm layer, especially during later crop growth stages. However, the different N placements exerted non-significant effects on NUE and fresh ear yield when urea was applied as the N source. In crux, deep CRU placement instead of urea at 15 cm depth can effectively improve fresh ear yield and NUE of sweet corn in fluvo-aquic soil because of higher root growth, better leaf physiological functions and increased availability of soil NO3−-N and NH4+-N.

Keywords

Soil horizon, Nitrogen, Nitrogen Use Efficiency, Organic chemistry, Rice Water Management and Productivity Enhancement, Plant Science, Yield (engineering), Crop, Plant Roots, Zea mays, Biochemistry, Article, Environmental science, Agricultural and Biological Sciences, Soil, Soil water, Urea, Climate change, Crop yield, Biomass, Fertilizers, Biology, Soil science, Factors Affecting Maize Yield and Lodging Resistance, Ecology, Life Sciences, Plant Nutrient Uptake and Signaling Pathways, Nitrogen Cycle, Crop Production, Agronomy, Materials science, Chemistry, Human fertilization, Delayed-Action Preparations, FOS: Biological sciences, Metallurgy, Cru, Agronomy and Crop Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Green
gold