Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.60692/s3...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/0j...
Other literature type . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of residue and weed management practices on weed flora, yield, energetics, carbon footprint, economics and soil quality of zero tillage wheat

تأثير ممارسات إدارة المخلفات والأعشاب الضارة على نباتات الأعشاب الضارة، والغلة، والطاقة، والبصمة الكربونية، والاقتصاد، وجودة التربة من قمح الحراثة الصفري
Authors: R. Puniya; B.R. Bazaya; Anil Kumar; B.C. Sharma; Nesar Ahmed Nesar; Ranjeet Singh Bochalya; M.C. Dwivedi; +5 Authors

Effect of residue and weed management practices on weed flora, yield, energetics, carbon footprint, economics and soil quality of zero tillage wheat

Abstract

AbstractA two-year field study was conducted duringRabi2018–2019 and 2019–20 to find out the influence of different residue and weed management practices on weed dynamics, growth, yield, energetics, carbon footprint, economics and soil properties in zero-tilled sown wheat at Research Farm, AICRP-Weed management, SKUAST-Jammu. The experiment with four rice residue management practices and four weed management practices was conducted in a Strip-Plot Design and replicated thrice. The results showed that residue retention treatments recorded lower weed density, biomass and higher wheat growth, yield attributes and yields of wheat as compared to no residue treatment. The magnitude of increase in wheat grain yield was 17.55, 16.98 and 7.41% when treated with 125% recommended dose of nitrogen + residue + waste decomposer (RDN + R + WD), 125% RDN + R, and 100% RDN + R, respectively, compared to no residue treatment. Further, all three herbicidal treatments decreased weed density and biomass than weedy treatments. Consequently, a reduction of 29.30, 28.00, and 25.70% in grain yield were observed in control as compared to sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin, respectively. Moreover, 125% RDN + R + WD obtained significantly higher energy output (137860 MJ ha−1) and carbon output (4522 kg CE/ha), but 100% RDN had significantly higher net energy (101802 MJ ha−1), energy use efficiency (7.66), energy productivity (0.23 kg MJ−1), energy profitability (6.66 kg MJ−1), carbon efficiency (7.66), and less carbon footprint (7.66) as compared to other treatments. Despite this, treatments with 125% RDN + R + WD and 125% RDN + R provided 17.58 and 16.96% higher gross returns, and 24.45% and 23.17% net outcomes, respectively, than that of control. However, compared to the control, sulfosulfuron + carfentrazone showed considerably higher energy output (140492 MJ ha−1), net energy (104778 MJ ha−1), energy usage efficiency (4.70), energy productivity (0.14 kg MJ−1), energy profitability (3.70 kg MJ−1), carbon output (4624 kg CE ha−1), carbon efficiency (4.71), and lower carbon footprint (0.27). Furthermore, sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin recorded 29.29% and 38.42%, 27.99%, and 36.91%, 25.69% and 34.32% higher gross returns and net returns over control treatment, respectively. All three herbicides showed higher gross returns, net returns, and benefit cost ratio over control. The soil nutrient status was not significantly affected either by residue or weed management practices. Therefore, based on present study it can be concluded that rice residue retention with 25% additional nitrogen and weed management by clodinafop-propargyl + metasulfuron herbicide found suitable for zero tillage wheat.

Keywords

No-till farming, Nitrogen, Science, Soil Science, Plant Science, Horticulture, Soil fertility, Greenhouse gas, Biochemistry, Article, Soil quality, Tillage, Agricultural and Biological Sciences, Soil, Soil water, Development and Impacts of Bioenergy Crops, Crop residue, Non-Chemical Weed Management, Biology, Triticum, Carbon Footprint, Weed Management and Herbicide Resistance, Ecology, Herbicides, Q, R, Life Sciences, Oryza, Agriculture, Weed control, Weed, Carbon footprint, Residue (chemistry), Soil carbon, Carbon, Agronomy, Field experiment, PEST analysis, FOS: Biological sciences, Medicine, Soil Carbon Dynamics and Nutrient Cycling in Ecosystems, Edible Grain, Agronomy and Crop Science, Economic threshold

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research