
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A planetary boundary for green water

Green water — terrestrial precipitation, evaporation and soil moisture — is fundamental to Earth system dynamics and is now extensively perturbed by human pressures at continental to planetary scales. However, green water lacks explicit consideration in the existing planetary boundaries framework that demarcates a global safe operating space for humanity. In this Perspective, we propose a green water planetary boundary and estimate its current status. The green water planetary boundary can be represented by the percentage of ice-free land area on which root-zone soil moisture deviates from Holocene variability for any month of the year. Provisional estimates of departures from Holocene-like conditions, alongside evidence of widespread deterioration in Earth system functioning, indicate that the green water planetary boundary is already transgressed. Moving forward, research needs to address and account for the role of root-zone soil moisture for Earth system resilience in view of ecohydrological, hydroclimatic and sociohydrological interactions.
- Stockholm Resilience Centre Sweden
- Colorado State University United States
- Bolin Centre for Climate Research Sweden
- AALTO-KORKEAKOULUSAATIO Finland
- Delft University of Technology Netherlands
CLIMATE-CHANGE, SEMIARID ECOSYSTEMS, 550, LAND-USE, VEGETATION RESPONSE, TROPICAL FORESTS, ZONE SOIL-MOISTURE, 551, 354, SAFE OPERATING SPACE, RAINFALL SEASONALITY, CARBON STORAGE, INTERANNUAL VARIABILITY
CLIMATE-CHANGE, SEMIARID ECOSYSTEMS, 550, LAND-USE, VEGETATION RESPONSE, TROPICAL FORESTS, ZONE SOIL-MOISTURE, 551, 354, SAFE OPERATING SPACE, RAINFALL SEASONALITY, CARBON STORAGE, INTERANNUAL VARIABILITY
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).169 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
