Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropsychopharmacology
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regional Heterogeneity for the Intracranial Self-Administration of Ethanol and Acetaldehyde within the Ventral Tegmental Area of Alcohol-Preferring (P) Rats: Involvement of Dopamine and Serotonin

Authors: Richard L. Bell; Avram Goldstein; Ting-Kai Li; Ying Zhang; James M. Murphy; Alejandro Zaffaroni; William J. McBride; +2 Authors

Regional Heterogeneity for the Intracranial Self-Administration of Ethanol and Acetaldehyde within the Ventral Tegmental Area of Alcohol-Preferring (P) Rats: Involvement of Dopamine and Serotonin

Abstract

The meso-limbic dopamine (DA) system has an important role in regulating alcohol drinking. Previous findings from our laboratory indicated that Wistar rats self-administered ethanol (EtOH) directly into the posterior, but not anterior, ventral tegmental area (VTA), and that coadministration of a DA D(2,3) receptor agonist or a serotonin-3 (5-HT3) receptor antagonist blocked EtOH self-administration. In addition, we reported that alcohol-preferring (P) rats self-administered acetaldehyde (ACD), the first metabolite of EtOH, into the posterior VTA. The objectives of this study were to compare the reinforcing effects of EtOH and ACD within the VTA of P rats to examine the possibility that the reinforcing effects of EtOH within the VTA may be mediated by its conversion to ACD. Adult female P rats were stereotaxically implanted with guide cannulae aimed at either the posterior or anterior VTA. At 1 week after surgery, rats were placed in standard two-lever (active and inactive) experimental chambers for a total of seven to eight sessions. The 4-h sessions were conducted every other day. The results indicated that (a) 75-300 mg% (17-66 mM) EtOH and 6-90 microM ACD were self-administered into the posterior, but not anterior, VTA; (b) the self-administration of 150 mg% EtOH was not altered by coinfusion of a catalase inhibitor; (c) coadministration of the D(2/3) agonist quinpirole (100 microM) blocked the self-infusions of 150 mg% EtOH and 23 microM ACD into the posterior VTA; and (d) coadministration of 200 microM ICS205,930 (5-HT3 receptor antagonist) prevented the self-infusion of 150 mg% EtOH, whereas concentrations of ICS 205,930 up to 400 microM had no effect on the self-infusion of 23 microM ACD into the posterior VTA. Overall, the results of this study indicate that EtOH and ACD can independently produce reinforcing effects within the posterior VTA, and that activation of DA neurons mediates these effects. Furthermore, activation of 5-HT3 receptors within the posterior VTA is involved in the self-infusion of EtOH, but not ACD.

Keywords

Neurons, Indoles, Quinpirole, Alcohol Drinking, Dose-Response Relationship, Drug, Ethanol, Dopamine, Central Nervous System Depressants, Self Administration, Acetaldehyde, Catheterization, Injections, Rats, Dopamine Agonists, Animals, Conditioning, Operant, Female, Enzyme Inhibitors, Reinforcement, Psychology, Amitrole

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 10%
Top 10%
bronze