
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Photogeneration and the bulk quantum efficiency of organic photovoltaics

Authors: Kan Ding; Xiaheng Huang; Yongxi Li; Stephen R. Forrest;
doi: 10.1039/d0ee03885g
Abstract
The bulk quantum efficiency is the ratio of current generated in the active region of a bulk heterojunction to the light absorbed. Using this parameter, we can distinguish the location of recombination between the heterojunction and the peripheral layers of the organic photovoltaic cell.
Related Organizations
- University of Michigan–Flint United States
- Department of Electrical Engineering and Computer Science Stanford University United States
- Department of Electrical Engineering and Computer Sciences (EECS) University of California and Berkeley United States
- Department of Electrical Engineering and Computer Science University of Michigan United States
- Department of Electrical Engineering and Computer Sciences (EECS) University of California and Berkeley United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
11
Top 10%
Average
Top 10%
Beta
Fields of Science
Fields of Science
Related to Research communities
Energy Research