
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrochemical assessment of the interaction of microbial living cells and carbon nanomaterials

This work considers the effects of various carbon nanomaterials and fibres on bioelectrocatalytic and respiratory activity of bacterial cells during the oxidation of ethanol in the presence of an electron transport mediator. Gluconobacter oxydans sbsp. industrius VKM B-1280 cells were immobilised on the surfaces of graphite electrodes and had an adsorption contact with a nanomaterial (multi-walled carbon nanotubes, thermally expanded graphite, highly oriented pyrolytic graphite, graphene oxide, reduced graphene oxide). The electrochemical parameters of the electrodes (the polarisation curves, the value of generated current at the introduction of substrate, the impedance characteristics) were measured in two-electrode configuration. Modification by multi-walled carbon nanotubes led to the increase of microbial fuel cell (MFC) electric power by 26%. The charge transfer resistance of modified electrodes was 47% lower than unmodified ones. Thermally expanded and pyrolytic graphites had a slight negative effect on the electrochemical properties of modified electrodes. The respiratory activity of bacterial cells did not change in the presence of nanomaterials. The data can be used in the development of microbial biosensors and MFC electrodes based on Gluconobacter cells.
- Russian Academy of Sciences Russian Federation
- Institute of Biochemistry and Physiology of Microorganisms Russian Federation
Bioelectric Energy Sources, Nanotubes, Carbon, Graphite, Electrochemical Techniques, Carbon
Bioelectric Energy Sources, Nanotubes, Carbon, Graphite, Electrochemical Techniques, Carbon
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
