Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2024 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.15488/13...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
https://dx.doi.org/10.18419/op...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The contribution of low‐head pumped hydro storage to grid stability in future power systems

Authors: Mohammed Qudaih; Bernd Engel; Daan P. K. Truijen; Jeroen D. M. De Kooning; Kurt Stockman; Justus Hoffstaedt; Antonio Jarquin‐Laguna; +7 Authors

The contribution of low‐head pumped hydro storage to grid stability in future power systems

Abstract

AbstractThe pan‐European power grid is experiencing an increasing penetration of Variable Renewable Energy (VRE). The fluctuating and non‐dispatchable nature of VRE hinders them in providing the Ancillary Service (AS) needed for the reliability and stability of the grid. Therefore, Energy Storage Systems (ESS) are needed along the VRE. Among the different ESS, a particularly viable and reliable option is Pumped Hydro Storage (PHS), given its cost‐effective implementation and considerable lifespan, in comparison to other technologies. Traditional PHS plants with Francis turbines operate at a high head difference. However, not all regions have the necessary topology to make these plants cost‐effective and efficient. Therefore, the ALPHEUS project will introduce low‐head PHS for regions with a relatively flat topography. In this paper, a grid‐forming controlled converter coupled with low‐head PHS that can contribute to the grid stability is introduced, emphasising its ability to provide different AS, especially frequency control, through the provision of fast Frequency Containment Reserve (fFCR) as well as synthetic system inertia. This paper is an extended version of the paper “The Contribution of Low‐head Pumped Hydro Storage to a successful Energy Transition”, which was presented at the 19th Wind Integration Workshop 2020.

Countries
Germany, Italy, United States, Belgium
Keywords

Technology and Engineering, pumped-storage power stations, 330, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau, TJ807-830, TURBINE, Renewable energy sources, ENERGY, Engineering, distributed power generation, power system stability, ddc:62, Veröffentlichung der TU Braunschweig, frequency stability, electric power generation, DESIGN METHOD, Energy, Renewable Energy, Sustainability and the Environment, energy storage, 624, 620, energy storage technology, Publikationsfonds der TU Braunschweig, MODEL-PREDICTIVE CONTROL, ScholarlyArticle, AXIAL-FLUX, ddc: ddc:6, ddc: ddc:62

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold