
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The variety of extreme blazars in the AstroSat view

Context. Among the blazar class, extreme blazars have exceptionally hard intrinsic X-ray/TeV spectra, and extreme peak energies in their spectral energy distribution (SED). Observational evidence suggests that the non-thermal emission from extreme blazars is typically non-variable. All these unique features present a challenging case for blazar emission models, especially regarding those sources with hard TeV spectra. Aims. We aim to explore the X-ray and GeV observational features of a variety of extreme blazars, including extreme-TeV, extreme-synchrotron (extreme-Syn), and regular high-frequency-peaked BL Lac objects (HBLs). Furthermore, we aim to test the applicability of various blazar emission models that could explain the very hard TeV spectra. Methods. We conducted a detailed spectral analysis of X-ray data collected with AstroSat and Swift-XRT, along with quasi-simultaneous γ-ray data from Fermi-LAT, for five sources: 1ES 0120+340, RGB J0710+591, 1ES 1101−232, 1ES 1741+196, and 1ES 2322−409. We took three approaches to modelling the SEDs: (1) a steady-state one-zone synchrotron-self-Compton (SSC) code, (2) another leptonic scenario of co-accelerated electrons and protons on multiple shocks applied to the extreme-TeV sources only (e–p co-acceleration scenario), and (3) a one-zone hadro-leptonic (ONEHALE) code. The latter code is used twice to explain the γ-ray emission process: proton synchrotron and synchrotron emission of secondary pairs. Results. Our X-ray analysis provides well-constrained estimates of the synchrotron peak energies for both 1ES0120+340 and 1ES1741+196. These findings categorise these latter objects as extreme-synchrotron sources, as they consistently exhibit peak energies above 1 keV in different flux states. The multi-epoch X-ray and GeV data reveal spectral and flux variabilities in RGB J0710+591 and 1ES 1741+196, even on timescales of days to weeks. As anticipated, the one-zone SSC model adequately reproduces the SEDs of regular HBLs but encounters difficulties in explaining the hardest TeV emission. Hadronic models offer a reasonable fit to the hard TeV spectrum, though with the trade-off of requiring extreme jet powers. On the other hand, the lepto-hadronic scenario faces additional challenges in fitting the GeV spectra of extreme-TeV sources. Finally, the e–p co-acceleration scenario naturally accounts for the observed hard electron distributions and effectively matches the hardest TeV spectrum of RGB J0710+591 and 1ES 1101−232.
- UNIVERSITE PARIS CITE France
- UNIVERSITE PARIS CITE France
- Heidelberg University Germany
- CEA LETI France
- Paris Observatory France
electron, exceptional, FOS: Physical sciences, GeV, hadronic, GLAST, blazar, X-ray, emission, synchrotron, TeV, electron p, High Energy Astrophysical Phenomena (astro-ph.HE), model, variability, proton synchrotron, 520, flux, gamma ray, spectral, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, spectral energy distribution
electron, exceptional, FOS: Physical sciences, GeV, hadronic, GLAST, blazar, X-ray, emission, synchrotron, TeV, electron p, High Energy Astrophysical Phenomena (astro-ph.HE), model, variability, proton synchrotron, 520, flux, gamma ray, spectral, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, spectral energy distribution
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
