
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Geomechanical effects of carbon sequestration as CO2 hydrates and CO2-N2 hydrates on host submarine sediments

Over the past 10 years, more than 300 trillion kg of carbon dioxide (CO2) have been emitted into the atmosphere, deemed responsible for climate change. The capture and storage of CO2 has been therefore attracting research interests globally. CO2 injection in submarine sediments can provide a way of CO2 sequestration as solid hydrates in sediments by reacting with pore water. However, CO2 hydrate formation may occur relatively fast, resulting decreasing CO2 injectivity. In response, nitrogen (N2) addition has been suggested to prevent potential blockage through slower CO2-N2 hydrate formation process. Although there have been studies to explore this technique in methane hydrate recovery, little attention is paid to CO2 storage efficiency and geomechanical responses of host marine sediments. To better understand carbon sequestration efficiency via hydrate formation and related sediment geomechanical behaviour, this study presents numerical simulations for single well injection of pure CO2 and CO2-N2 mixture into submarine sediments. The results show that CO2-N2 mixture injection improves the efficiency of CO2 storage while maintaining relatively small deformation, which highlights the importance of injectivity and hydrate formation rate for CO2 storage as solid hydrates in submarine sediments.
- Rensselaer Polytechnic Institute United States
- Rensselaer Polytechnic Institute United States
Environmental sciences, GE1-350
Environmental sciences, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
