
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Preliminary Results on Experimental Modelling of an Adsorption Chiller

doi: 10.1051/rees/2021030
Adsorption refrigeration, as a renewable cooling method, has received more attention in the last few years. The interest in this technology comes especially from developing and tropical countries, where the demand for cooling increases every year due to economy and population growth. Based on this scenario, this work aims to develop a numerical model of an adsorption chiller driven with solar energy, which can be used to optimize the cooling system operation of the building where the device is situated and compare it with the current cooling methods in use. The numerical study here presented was created using Matlab/Simulink™, it is based on a lumped parameter model that relies on physical properties and represents a cooling system using a pair of silica gel-water in a two-bed chiller. In this study, the authors proposed a simplified version of the system and the numerical model, which aims to reduce the simulation time and provide faster results. Besides the temperatures in the system, which range from 52 °C to 72 °C in the hot cycle and 12 °C to 23 °C in the chilled water cycle, the results also include the variation of water uptake in the two adsorbent beds. In general, the simulated temperature, cooling and heating power and coefficient of performance (COP) are in fair agreement with the literature data, nevertheless, the final results show that improvements still have to be performed.
TJ807-830, Energy conservation, TJ163.26-163.5, Renewable energy sources
TJ807-830, Energy conservation, TJ163.26-163.5, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
