
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling Cost Impacts and Adaptation of Freeze–Thaw Climate Change on a Porous Asphalt Road Network

Changes in weather patterns pose a threat to the serviceability and long-term performance of roads, and porous asphalt (PA) roads are particularly sensitive to the freezing-thawing (FT) phenomenon. The main objective of this research is to assess the impact of climate change, particularly freezing and thawing cycles, on PA. Climate models predict changes in air temperature, not pavement temperature. To predict the climate change impact on pavements performance, this requires first establishing a relationship between air and road temperature and a correlation between pavement performance and FT cycles. This project focuses on the Netherlands, where PA pavement use has become mandatory, and recent severe winters have increased the discussion about the cold weather performance of porous asphalt and the potential challenges of changing winter weather patterns. When considering long-term changes in climate, the cost impacts of freeze-thaw on PA pavement are predicted to vary regionally and in most areas reach a point in the middle of the century when a reactive wait-and-see approach is more advantageous than proactive adaptation. Further research is suggested to refine the relationship between observed damage and freeze-thaw impacts on PA pavement.
- Wageningen University & Research Netherlands
- University of New Hampshire United States
- University of Colorado Boulder United States
- University of Twente Netherlands
Roads, Planning, SDG 13 - Climate Action, Climate change, Adaptation, Freeze-thaw, Porous asphalt, Civil and Structural Engineering
Roads, Planning, SDG 13 - Climate Action, Climate change, Adaptation, Freeze-thaw, Porous asphalt, Civil and Structural Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
