
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts

doi: 10.1063/1.4822050
Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts
In the perspective of fossil fuel depletion, the importance of renewable and substitute fuels is remarkable. In this study, clean liquid-fuel was obtained from tar through catalytic hydrorefining method. Hydrorefining catalysts were prepared by impregnation, containing tungsten-nickel (W-Ni), molybdenum-nickel (Mo-Ni), tungsten-molybdenum-nickel (W-Mo-Ni), and tungsten-molybdenum-cobalt (W-Mo-Co). γ-alumina was used as catalysts supporter. The clean liquid fuel product was analyzed by Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, elemental analyzer, octane number for gasoline fraction and cetane-number for diesel fraction, and Engler distillation range. The rules of sulfur and nitrogen content were also investigated. The overall product yield was up to 97%, and the sulfur and nitrogen content was less than 70 ppm. The W-Mo-Ni/γ-Al2O3 catalyst showed high performance in catalytic hydrofinishing and good stabilization under required conditions.
- State Key Laboratory of Multiphase Complex Systems China (People's Republic of)
- State Key Laboratory of Multiphase Complex Systems China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Institute of Process Engineering China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
1 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
