Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimation of solar global irradiation in remote areas

Authors: R. Urraca; J. Antonanzas; F. J. Martínez-de-Pisón; F. Antonanzas-Torres;

Estimation of solar global irradiation in remote areas

Abstract

Solar global irradiation is barely recorded in remote areas around the world. The lack of access to an electricity grid in these areas presents an enormous opportunity for electrification through renewable energy sources and, specifically, with photovoltaic energy where great solar resources are available. Traditionally, solar resource estimation was performed using parametric-empirical models based on the relationship between solar irradiation and other atmospheric and commonly measured variables, such as temperatures, rainfall, sunshine duration, etc., achieving a relatively high level of certainty. The significant improvement in soft-computing techniques, applied extensively in many research fields, has led to improvements in solar global irradiation modeling. This study conducts a comparative assessment of four different soft-computing techniques (artificial neural networks, support vector regression, M5P regression trees, and extreme learning machines). The results were also compared with two well-known parametric models [Liu and Scot, Agric. For. Meteorol. 106(1), 41–59 (2001) and Antonanzas-Torres et al., Renewable Energy 60, 604–614 (2013b)]. A striking mean absolute error of 1.74 MJ/m2 day was achieved with support vector regression (around 10% lower than with classic parametric models). Furthermore, the annual sums of estimated solar irradiation with this technique were within the intrinsic tolerance of pyranometers (5%). This methodology is performed in free environment R software and released at www.github.com/EDMANSOLAR/remote for future replications of the study in different areas.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%