Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://aip.scitatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aip.scitation.org/doi/...
Conference object
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2019
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1063/1.5117...
Conference object . 2019 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Conference object . 2019
Data sources: CNR ExploRA
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Limestone calcination–carbonation in a fluidized bed reactor/receiver for thermochemical energy storage applications

Authors: Tregambi C.; Di Lauro F.; Montagnaro F.; Salatino P.; Solimene R.;

Limestone calcination–carbonation in a fluidized bed reactor/receiver for thermochemical energy storage applications

Abstract

Concentrating Solar Power (CSP) systems represent a key technology to exploit solar energy thanks to the easy integration with energy storage systems. The thermochemical energy storage (TCES) relies on reversible chemical reactions to store the solar energy in the form of chemical bonds. Limestone calcination/carbonation is an appealing reaction for TCES. This cycle has been widely studied in the Calcium Looping (CaL) process for Carbon Capture and Sequestration/Use (CCS/U), within which the calcination is usually carried out in a CO-rich environment at temperature of 940-950 °C. When the CaL cycle is considered for TCES, the energy required by the calciner is supplied by CSP and the whole system has to work in a closed loop, as the CO released during the calcination is required for the subsequent carbonation. Therefore, the operating conditions resemble those typical of the CCS/U CaL. The novel idea of this work is to perform a CaL-TCES cycle working in an open loop configuration, by coupling the system with a CO emitting industry. Calcination can then be accomplished under air atmosphere at lower temperature, thus preserving to some extent the material reactivity. In particular, the open loop CaL-TCES cycle has been experimentally investigated using a Fluidized Bed (FB) reactor directly heated by a solar simulator (3 MW m peak flux, 3 kW total power). Several looping cycles have been carried out on a commercial limestone sample to estimate the sorbent reactivity over cycling. The properties of calcined sorbents have been investigated by chemical physical analyses. A comparison with results obtained under CCS/U CaL conditions has also been performed, to scrutinize the potential advantages of working in an open loop configuration.

Country
Italy
Keywords

fluidized beds, CSP, TCES

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
bronze