Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://aip.scitatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aip.scitation.org/doi/...
Conference object
Data sources: UnpayWall
https://doi.org/10.1063/5.0035...
Conference object . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of low-cost H2 on the solar fuel process design: A case study in solar gasified Fischer–Tropsch fuels

Authors: John Pye; Alireza Rahbari; Ali Shirazi; Mahesh B. Venkataraman;

The impact of low-cost H2 on the solar fuel process design: A case study in solar gasified Fischer–Tropsch fuels

Abstract

This paper focuses on how the low-cost renewable H2 can change a process design configuration in solar fuel plant. As a case study, an industrial process is considered in detail at ANU to convert the algal biomass into Fischer–Tropsch liquid fuels via solar-powered supercritical water gasification (SCWG). The yield gases from the gasifier mainly contain methane, which is then converted into the suitable composition of syngas in the steam methane reforming (SMR) process. Two scenarios are evaluated here to balance the H2:CO ratio for the downstream process: (i) dumping a fraction of carbon in the form of CO2, (ii) supplying make-up H2 from PV-driven electrolysis unit. A detailed steady-state model of the SCWG-SMR and FT plants is developed in Aspen Plus software. The performance curves of gasification/FT units at design and off-design points together with a set of control logics is used to form an energy-based system-level dynamic model in OpenModelica. The levelised cost of fuel (LCOF) as a key parameter for system optimisation is calculated for the considered scenarios. It is revealed that the preferred process design choice of the whole plant is highly affected by the H2 price from a techno-economic standpoint. If the H2 cost falls by 42% (i.e. 5.6 AUD/kg), the SMR-H2 configuration is more economically feasible as compared to the SMR-dumping scenario.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
bronze