
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization and experimental analysis of a solar powered adsorption refrigeration system using selective adsorbent/adsorbate pairs

doi: 10.1063/5.0076645
Adsorption-based cooling system is a cost-effective method of heat conversion. It has the potential to dramatically enhance energy efficiency while also lowering pollutant levels. For this purpose, a solar-powered vapor adsorption refrigeration system (VAdRS) using activated carbon–methanol and zeolite–water as the working pair has been designed and experimentally evaluated. The aim of this experiment was to evaluate the coefficient of performance (COP) and specific cooling power (SCP) of a solar cooling unit by utilizing the optimum minimum and maximum mass concentration ratios. The novel solar-assisted adsorption refrigeration system optimization technique is used in this research to evaluate the optimal performance of the solar-powered VAdRS under various operating scenarios. The experiment was conducted at the optimum minimum and maximum mass concentration ratios of 0.1 and 0.2, respectively. The experimental results show that the activated carbon–methanol adsorption system produces a higher COP value than the zeolite–water adsorption system of 0.49–0.64 and 0.64–0.67 at constant evaporator and condenser temperature, respectively. It also showed that the higher SCP value was revealed in the zeolite–water-based adsorption cooling system as 207.5–217.4 kJ/kg. It was revealed that AC–methanol could be used to operate better in low-generating-temperature conditions. On the other hand, the zeolite–water adsorption system can be used at higher generating temperatures.
- University B.D.T College of Engineering India
- University B.D.T College of Engineering India
- Universiti Malaysia Perlis Malaysia
- Universiti Malaysia Perlis Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
