
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Can lidars assess wind plant blockage in simple terrain? A WRF-LES study

doi: 10.1063/5.0103668
Wind plant blockage reduces wind velocity upstream of wind plants, reducing the power generated by turbines adjacent to the inflow, and potentially throughout the plant as well. The nature of the mechanism that amplifies blockage as well as the velocity reductions in both the induction zone and potentially deeper into the array are not well understood. Field observations can provide valuable insight into the characteristics of the induction zone and the mechanisms that amplify it. However, the relatively small velocity reductions that have been measured experimentally pose a challenge in quantifying blockage, especially in onshore environments with flow heterogeneities that may be of the same scale as the blockage effect itself. We simulate the flow around the King Plains wind plant in the relatively simple terrain of Oklahoma, the location of the American WAKE experimeNt, to evaluate wind plant blockage in this environment. Using numerical simulations, we find the largest velocity deceleration (0.64 m s−1; 8%) immediately upstream of the wind plant, and 1% velocity deficits 24 rotor diameters upstream of the first turbine row. We also use virtual measurements upstream of the wind plant to analyze the uncertainties and difficulties in measuring blockage using a scanning lidar on shore. Based on our virtual lidar study, the induction zone of land-based wind plants can be incorrectly estimated using observations if the effects of nonuniform terrain on the flow are not carefully considered. Changes in terrain elevation produce local variations in wind speed (as measured by a scanning lidar) that exceed in magnitude the deceleration within the induction zone. We refer to these local changes in wind speed as terrain effects. A methodology to differentiate between terrain effects and blockage in experimental settings is proposed and evaluated herein, highlighting the difficulties and uncertainties associated with measurement and simulation of blockage in even relatively simple onshore environments.
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
- National Renewable Energy Laboratory United States
- University Corporation for Atmospheric Research United States
- National Center for Atmospheric Research United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
