Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2021
License: CC BY NC SA
Data sources: CONICET Digital
Crop and Pasture Science
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Warmer nights during early stages affect wheat development without grain yield penalty

Authors: Daniel J. Miralles; Daniel J. Miralles; Guillermo Garcia; Guillermo Garcia; Román A. Serrago; Víctor D. Giménez; Víctor D. Giménez;

Warmer nights during early stages affect wheat development without grain yield penalty

Abstract

This study analyses the impact of higher night temperature during the tillering phase on grain yield, focusing on crop development and tiller production dynamics in wheat (Triticum aestivum L.). Field experiments were carried out at the School of Agriculture, Buenos Aires, Argentina during the 2015 and 2016 growing seasons and combined: (1) two nitrogen availability levels (60 and 200 kg N ha–1) and (2) two night temperature conditions (control unheated and night temperature increase (NTI) during the tillering phase). The heating treatment increased night temperature ~2.3°C above the ambient night temperature. Across growing seasons, average minimum temperature during the tillering phase ranged from 8.5°C to 12.4°C. Warmer nights reduced time to anthesis (~4 days) due to a shortening in the duration of the tillering phase. NTI did not modify the maximum tiller number at plant level or per unit area. Higher N availabilities increased maximum tiller number ~30% compared with low N levels. Increased night temperature did not modify (P = 0.3418) grain yield in high and low N availabilities. Although development during the tillering phase was accelerated, the NTI during this stage would have a minor impact on both tillering and yield and its numerical components.

Country
Argentina
Keywords

TEMPERATURE EFFECTS, CLIMATE CHANGE, WHEAT, TILLERS, https://purl.org/becyt/ford/4.1, https://purl.org/becyt/ford/4, YIELD COMPONENTS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research