
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events

Significance Mass mortality events (MMEs), the rapid, catastrophic die-off of organisms, are an example of a rare event affecting natural populations. Individual reports of MMEs clearly demonstrate their ecological and evolutionary importance, yet our understanding of the general features characterizing such events is limited. Here, we conducted the first, to our knowledge, quantitative analysis of MMEs across the animal kingdom, and as such, we were able to explore novel patterns, trends, and features associated with MMEs. Our analysis uncovered the surprising finding that there have been recent shifts in the magnitudes of MMEs and their associated causes. Our database allows the recommendation of improvements for data collection in ways that will enhance our understanding of how MMEs relate to ongoing perturbations to ecosystems.
- University of San Diego United States
- Southern Illinois University Carbondale United States
- Dartmouth College United States
- Dartmouth College United States
- University of California, Berkeley United States
defaunation, Extinction, Biological, Extinction, Biological, catastrophes, Models, Biological, rare demographic events, Models, death, Animals, Biomass
defaunation, Extinction, Biological, Extinction, Biological, catastrophes, Models, Biological, rare demographic events, Models, death, Animals, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).264 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
