Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alcohol Metabolism-mediated Oxidative Stress Down-regulates Hepcidin Transcription and Leads to Increased Duodenal Iron Transporter Expression

Authors: Evelyn Fein; Nikolai A. Timchenko; Elizabeth Klein; Hasan Kulaksiz; Duygu Dee Harrison-Findik; Dahn L. Clemens; Dahn L. Clemens; +4 Authors

Alcohol Metabolism-mediated Oxidative Stress Down-regulates Hepcidin Transcription and Leads to Increased Duodenal Iron Transporter Expression

Abstract

Patients with alcoholic liver disease frequently exhibit iron overload in association with increased hepatic fibrosis. Even moderate alcohol consumption elevates body iron stores; however, the underlying molecular mechanisms are unknown. Hepcidin, a circulatory peptide synthesized in the liver, is a key mediator of iron metabolism. Ethanol metabolism significantly down-regulated both in vitro and in vivo hepcidin mRNA and protein expression. 4-Methylpyrazole, a specific inhibitor of the alcohol-metabolizing enzymes, abolished the effects of ethanol on hepcidin. However, ethanol did not alter the expression of transferrin receptor1 and ferritin or the activation of iron regulatory RNA-binding proteins, IRP1 and IRP2. Mice maintained on 10-20% ethanol for 7 days displayed down-regulation of liver hepcidin expression without changes in liver triglycerides or histology. This was accompanied by elevated duodenal divalent metal transporter1 and ferroportin protein expression. Injection of hepcidin peptide negated the effect of ethanol on duodenal iron transporters. Ethanol down-regulated hepcidin promoter activity and the DNA binding activity of CCAAT/enhancer-binding protein alpha (C/EBPalpha) but not beta. Interestingly, the antioxidants vitamin E and N-acetylcysteine abolished both the alcohol-mediated down-regulation of C/EBPalpha binding activity and hepcidin expression in the liver and the up-regulation of duodenal divalent metal transporter 1. Collectively, these findings indicate that alcohol metabolism-mediated oxidative stress regulates hepcidin transcription via C/EBPalpha, which in turn leads to increased duodenal iron transport.

Keywords

Fomepizole, Male, Ethanol, Duodenum, CCAAT-Enhancer-Binding Protein-beta, Iron, Biological Transport, Antioxidants, Mice, Oxidative Stress, Gene Expression Regulation, Hepcidins, CCAAT-Enhancer-Binding Protein-alpha, Animals, Humans, Pyrazoles, Female, Reactive Oxygen Species, Antimicrobial Cationic Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    283
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
283
Top 1%
Top 1%
Top 1%
gold
Related to Research communities
Energy Research