Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hydrological Sciences Journal
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 2 versions

Integrated water availability modelling to assess sustainable agricultural intensification options in the Meki catchment, Central Rift Valley, Ethiopia

Authors: Meron Teferi Taye; Girma Yimer Ebrahim; Likimyelesh Nigussie; Fitsum Hagos; Stefan Uhlenbrook; Petra Schmitter;

Integrated water availability modelling to assess sustainable agricultural intensification options in the Meki catchment, Central Rift Valley, Ethiopia

Abstract

The Meki catchment in the Central Rift Valley basin of Ethiopia is currently experiencing irrigation expansion and water scarcity challenges. The objective of this study is to understand the basin’s current and future water availability for agricultural intensification. This was done by simulating scenarios through an integrated SWAT-MODFLOW model to assess the water balance. The scenarios were co-developed with communities who expressed their aspirations for agricultural intensification in conjunction with projected climate change. The results show that with the present land use and climate, the catchment is already water stressed and communities cannot meet their irrigation water demand, particularly in the first irrigation season (October–January). However, in the second irrigation season (February–May) water resource availability is better and increasing irrigated area by 50% from the present extent is possible. With a climate change scenario that favours more rainfall and shallow groundwater use, agricultural intensification is feasible to some extent.

Country
France
Keywords

crop water use, sustainable intensification, shallow water, surface water, temperature, land use, forecasting, water budget, water requirements, water availability, small-scale irrigation, modelling, sustainable agriculture, communities, water balance, climate change, water yield, groundwater, wells, catchment areas, rain

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
hybrid