
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biofilm development and the dynamics of preferential flow paths in porous media

pmid: 24028574
A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rate and biomass detachment caused by shear forces only. The stable flow path formed when biofilm detachment balances growth, even with biomass weakened by decay. However, shear forces combined with biomass lysis upon starvation could produce an intermittently shifting location of flow channels. Dynamic flow pathways may also occur when combined liquid shear and pressure forces act on the biofilm. In spite of repeated clogging and unclogging of interconnected pore spaces, the average permeability reached a quasi-constant value. Oscillations in the medium permeability were more pronounced for weaker biofilms.
- Dow Chemical Company United States
- Delft University of Technology Netherlands
- Dow Chemical Company United States
Biofilms, Water Movements, Computer Simulation, Biomass, Models, Biological, Porosity, Permeability
Biofilms, Water Movements, Computer Simulation, Biomass, Models, Biological, Porosity, Permeability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).72 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
