Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Phycology
Article . 1999 . Peer-reviewed
Data sources: Crossref
European Journal of Phycology
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Free-floating Ulva in the southwest Netherlands: species or morphotypes? a morphological, molecular and ecological comparison

species or morphotypes? A morphological, molecular and ecological comparison
Authors: Erik-jan Malta; Pauline Kamermans; Stefano G. A. Draisma;

Free-floating Ulva in the southwest Netherlands: species or morphotypes? a morphological, molecular and ecological comparison

Abstract

Free-floating Ulva L. biomass in the eutrophic brackish 'Veerse Meer' lagoon (southwest Netherlands) consists of four morphologically identified species: U. curvata (Kutzing) De Toni, U. lactuca L., U. rigida C. Agardh and U.scandinavica Bliding. U.curvata could be recognized easily because of the characteristic central cavity in the holdfast of the attached plants, the arrangement of cells in rows and the single pyrenoid in each cell. U. rigida was distinguished by the thick thallus and the large number of pyrenoids. The Veerse Meer isolate, however, was slightly different from the isolate from the Oosterschelde estuary (the Netherlands). U. lactuca and U. scandinavica showed a high degree of overlap in thallus thickness and cell size, but U. scandinavica usually possessed more pyrenoids. However, doubts have frequently been expressed about the use of some morphological characters in Ulva taxonomy. To determine the Validity of such characters in the identification of Ulva species, the morphological variation within and between morphological species was recorded and a molecular data set generated. To detect possible ecophysiological differences between species, optimum temperatures and salinities for growth were determined experimentally. The sequences of the nuclear ribosomal DNA internal transcribed spacer 2 (ITS2) and flanking regions of U. lactuca, U, rigida and U.scandinavica from the Veerse Meer were all identical, but differed from that of U. rigida from the Oosterschelde estuary. Ulva species from the Veerse Meer were most closely related to U.armoricana and U. rigida from Brittany (2.9 % and 3.5 % divergence respectively); the difference between U. rigida from the Veerse Meer and from the Oosterschelde estuary was 7.5 %. Rooted trees, based on a comparison of these sequences with sequences of other Ulva and Enteromorpha species obtained from the literature, using Monostroma arcticum as outgroup, suggested that Ulva is paraphyletic with respect to Enteromorpha. The optimum temperature for growth of U. curvata was 25 degrees C; for all other species it was 10 degrees C. The optimum salinity for growth was 30 degrees C for all isolates. It is concluded that U. lactuca, U rigida and U. scandinavica from the Veerse Meer are all members of one highly polymorphic species. [KEYWORDS: Enteromorpha; ITS sequences; morphological variation; salinity; taxonomy; temperature; Ulva Nuclear rdna; temperature responses; brittany france; chlorophyta; growth; sequences; dna; macroalgae; biomass; photosynthesis]

Country
Netherlands
Keywords

NUCLEAR RDNA, morphological variation, SEQUENCES, PHOTOSYNTHESIS, temperature, ITS sequences, DNA, salinity, BIOMASS, taxonomy, Ulva, Enteromorpha, GROWTH, TEMPERATURE RESPONSES, MACROALGAE, BRITTANY FRANCE, CHLOROPHYTA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 10%
bronze