Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Australian Journal of Civil Engineering
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A risk-informed approach to coastal zone management

Authors: Jongejan, R.B.; Ranasinghe, R.; Vrijling, J.K.; Callaghan, D.;

A risk-informed approach to coastal zone management

Abstract

Economic and population growth have led to an unprecedented increase in the value at risk in coastal zones over the last century. To avoid excessive future losses, particularly in the light of projected climate change impacts, coastal zone managers have various instruments at their disposal. These primarily concern land-use planning (establishing buffer zones) and engineering solutions (beach nourishment and coastal protection). In this paper, we focus on risk mitigation through the implementation of buffer zones (setback lines). Foregoing land-use opportunities in coastal regions and protecting coasts is costly, but so is damage caused by inundation and storm erosion. Defining appropriate setback lines for land-use planning purposes is a balancing act. It is, however, unclear what level of protection is facilitated by current approaches for defining setback lines, and whether this is, at least from an economic perspective, sufficient. In this paper, we present an economic model to determine which setback lines would be optimal from an economic perspective. The outcomes of the model provide a useful reference point in the political debate about the acceptability of risk in coastal zones. The main conclusions are: (i) that it is useful to define setback lines on the basis of their exceedance probabilities; (ii) that the exceedance probability of an economically efficient setback line will typically be in the order of magnitude of 1/100 per year; (iii) that it is important to distinguish between situations in which morphological conditions are stationary and non-stationary; and (iv) that long-term uncertainties (eg. due to climate change) influence the exceedance probability of efficient setback lines but only to a limited extent. The economic model stresses the need for a probabilistic approach to beach erosion modelling. The recently-developed Probabilistic Coastal Setback Line was applied at Narrabeen beach, Sydney, Australia, to illustrate how economically optimal setback lines can be derived for specific sites.

Keywords

Coastal risk, 2205 Civil and Structural Engineering, Coastal hazard, Coastal protection, 710, Sea level rise, Setback line, Climate change

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
bronze