Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems

Authors: Kui Jiao; Qing Du; Yan Yin; Lin Ye;

Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems

Abstract

In this study, the performance of two high-temperature proton exchange membrane fuel cell (HT-PEMFC) systems has been investigated by using the method of exergy analysis under different operating conditions, one of the systems is directly fueled by hydrogen (direct hydrogen system), and another by methane (natural gas) with steam methane reforming (reformed hydrogen system). The results indicate that for both systems, a higher fuel cell operating temperature tends to increase the efficiency and power output of the system. However, higher inlet air relative humidity and operating pressure has insignificant influence on improving the quality of both systems. Fuel cell stack is the place where exergy loss is the highest, which means more efforts should be focused on improving the energy exchange efficiency and decreasing the irreversibility of fuel cell to increase the system efficiency.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%