

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of small water retention structures on diffusive CO2and CH4emissions along a highly impounded river

The impoundment of running waters through the construction of large dams is recognised as one of the most important factors determining the transport, transformation, and outgassing of carbon (C) in fluvial networks. However, the effects of small and very small water retention structures (SWRS) on the magnitude and spatiotemporal patterns of C emissions are still unknown, even though SWRS are the most common type of water retention structure causing river fragmentation worldwide. Here we evaluated and compared diffusive carbon dioxide (CO2) and methane (CH4) emissions from river sections impounded by SWRS and from their adjacent free-flowing sections along a highly impounded river. Emissions from impounded river sections (mean [SE] = 17.7 [2.8] and 0.67 [0.14] mmol m−2 d−1, for CO2 and CH4, respectively) never exceeded those from their adjacent free-flowing river sections (230.6 [49.7] and 2.14 [0.54] mmol m−2 d−1). We attribute this finding to the reduced turbulence in impounded river sections induced by SWRS compared to free-flowing river sections (i.e., physical driver). Likewise, the presence of SWRS favoured an increase of the concentration of CH4 in impounded waters, but this increase was not sufficient to cause a significant influence in the CH4 efflux from the downstream free-flowing river sections. By contrast, this influenced the larger-scale longitudinal patterns of dissolved CH4, which exhibited a clear shifting pattern along the study stretch, modulated by variables associated with the presence of SWRS, such as higher water residence times, higher sedimentation rates, and higher temperatures. Overall, our results show that the presence of SWRS can modify the concentrations of C gases in highly impounded rivers but exerts a minor influence on diffusive C emissions.
- University of the Basque Country Spain
- Catalan Institute for Water Research Spain
- University of Barcelona Spain
- Umeå University Sweden
dam, fluvial network, Oceanografi, hydrologi och vattenresurser, Oceanography, Hydrology and Water Resources, Rivers, fragmentation, Metà, Cursos d'aigua, greenhouse gas emissions, methane, discontinuum, carbon dioxide, poundment, regulation, Miljövetenskap, Carbon dioxide, Diòxid de carboni, Methane, Environmental Sciences
dam, fluvial network, Oceanografi, hydrologi och vattenresurser, Oceanography, Hydrology and Water Resources, Rivers, fragmentation, Metà, Cursos d'aigua, greenhouse gas emissions, methane, discontinuum, carbon dioxide, poundment, regulation, Miljövetenskap, Carbon dioxide, Diòxid de carboni, Methane, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 80 download downloads 50 - 80views50downloads
Data source Views Downloads Diposit Digital de la Universitat de Barcelona 80 50


