
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids

The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
- Harbin Institute of Technology China (People's Republic of)
- Universiti Teknologi Petronas Malaysia
- Harbin Institute of Technology China (People's Republic of)
- Universiti Teknologi MARA Malaysia
- Universiti Tunku Abdul Rahman Malaysia
Plant Extracts, microalgae, Ionic Liquids, harvesting, Special focus on Algal Bioprocess Engineering, Culture Media, ionic liquids, downstream processing, cultivation, Biofuels, extraction, Microalgae, Biomass, TP248.13-248.65, Biotechnology
Plant Extracts, microalgae, Ionic Liquids, harvesting, Special focus on Algal Bioprocess Engineering, Culture Media, ionic liquids, downstream processing, cultivation, Biofuels, extraction, Microalgae, Biomass, TP248.13-248.65, Biotechnology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).328 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
