Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What Types of Jets Does Nature Make? A New Population of Radio Quasars

Authors: Paolo Padovani; M. Perri; Hermine Landt; Eric S. Perlman; Eric S. Perlman; Paolo Giommi;

What Types of Jets Does Nature Make? A New Population of Radio Quasars

Abstract

We use statistical results from a large sample of about 500 blazars, based on two surveys, the Deep X-ray Radio Blazar Survey (DXRBS), nearly complete, and the RASS-Green Bank survey (RGB), to provide new constraints on the spectral energy distribution of blazars, particularly flat-spectrum radio quasars (FSRQ). This reassessment is prompted by the discovery of a population of FSRQ with spectral energy distribution similar to that of high-energy peaked BL Lacs. The fraction of these sources is sample dependent, being ~ 10% in DXRBS and ~ 30% in RGB (and reaching ~ 80% for the Einstein Medium Sensitivity Survey). We show that these ``X-ray strong'' radio quasars, which had gone undetected or unnoticed in previous surveys, indeed are the strong-lined counterparts of high-energy peaked BL Lacs and have synchrotron peak frequencies, nu_peak, much higher than ``classical'' FSRQ, typically in the UV band for DXRBS. Some of these objects may be 100 GeV - TeV emitters, as are several known BL Lacs with similar broadband spectra. Our large, deep, and homogeneous DXRBS sample does not show anti-correlations between nu_peak and radio, broad line region, or jet power, as expected in the so-called ``blazar sequence'' scenario. However, the fact that FSRQ do not reach X-ray-to-radio flux ratios and nu_peak values as extreme as BL Lacs and the elusiveness of high nu_peak - high-power blazars suggest that there might be an intrinsic, physical limit to the synchrotron peak frequency that can be reached by strong-lined, powerful blazars. Our findings have important implications for the study of jet formation and physics and its relationship to other properties of active galactic nuclei.

15 pages, 12 figures. Accepted for publication in The Astrophysical Journal (May 1 2003 issue). Postscript file also available at http://www.stsci.edu/~padovani/unif_papers.html

Country
Italy
Keywords

NEANIAS Atmospheric Research Community, NEANIAS Space Research Community, Space and Planetary Science, Astrophysics (astro-ph), FOS: Physical sciences, Astronomy and Astrophysics, Energy Research, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
Green
gold
Related to Research communities
Energy Research