Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Materials and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Smart Materials and Structures
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Smart Materials and Structures
Article . 2019 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-adhesive electrode applied to ZnO nanorod-based piezoelectric nanogenerators

Authors: Pelin Yilmaz; Peter Greenwood; Simone Meroni; Joel Troughton; Petr Novák; Xuan Li; Trystan Watson; +1 Authors

Self-adhesive electrode applied to ZnO nanorod-based piezoelectric nanogenerators

Abstract

ZnO nanorod-based piezoelectric devices have gained wide attention in energy harvesting systems as they can be processed at low temperatures onto flexible plastic substrates, giving a good potential for low cost. However, the vacuum-evaporated, precious metal contacts remain a high-cost element of the devices. This paper discusses the use of transparent conductive adhesives (TCAs) as an alternative top contact that is free from both vacuum-evaporation and precious metals. TCA films of various thicknesses were tape-cast onto nickel microgrid on PET substrates and adhered using low-pressure cold-lamination to bond the adhesive component of the TCA to piezoelectric generators with the final device structure of PET/ITO/ZnO-seed/ZnO-nanorods/CuSCN/PEDOT:PSS/TCA. The piezoelectric performances of the devices were compared by measuring output voltage in open-circuit and maximum power output across a range of resistive loads. The voltage output was observed to rise with increasing TCA thickness, reaching a maximum value of 0.72 V generated with 110 mu m of TCA as top contact. However, the higher resistance due to increased TCA thickness led to decreased power output; a maximum calculated power of 0.25 mu W was obtained from the device with the thinnest TCA layer of 22 mu m. Finally, the performance of piezoelectric nanogenerators with TCA contacts were compared to a control device with an evaporated gold contact.

Country
United Kingdom
Keywords

energy harvesting, solution synthesis, nanostructure, zinc oxide, PEDOT:PSS, piezoelectric

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid