Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate

Authors: Eunice Maia de Andrade; Alessandro Baccini; Alessandro Baccini; Andrea D A Castanho; Marcia N. Macedo; Paulo M. Brando; Paulo M. Brando; +2 Authors

Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate

Abstract

Abstract Seasonally dry tropical forests (SDTFs) account for one-third of the interannual variability of global net primary productive (NPP). Large-scale shifts in dry tropical forest structure may thus significantly affect global CO2 fluxes in ways that are not fully accounted for in current projections. This study quantifies how changing climate might reshape one of the largest SDTFs in the world, the Caatinga region of northeast Brazil. We combine historical data and future climate projections under different representative concentration pathways (RCPs), together with spatially explicit aboveground biomass estimates to establish relationships between climate and vegetation distribution. We find that physiognomies, aboveground biomass, and climate are closely related in the Caatinga—and that the region’s bioclimatic envelope is shifting rapidly. From 2008–2017, more than 90% of the region has shifted to a dryer climate space compared to the reference period 1950–1979. An ensemble of global climate models (based on IPCC AR5) indicates that by the end of the 21st century the driest Caatinga physiognomies (thorn woodlands to non-vegetated areas) could expand from 55% to 78% (RCP 2.6) or as much as 87% (RCP8.5) of the region. Those changes would correspond to a decrease of 30%–50% of the equilibrium aboveground biomass by the end of the century (RCP 2.6 and RCP8.5, respectively). Our results are consistent with historic vegetation shifts reported for other SDTFs. Projected changes for the Caatinga would have large-scale impacts on the region’s biomass and biodiversity, underscoring the importance of SDTFs for the global carbon budget. Understanding such changes as presented in this study will be useful for regional planning and could help mitigate their negative social impacts.

Keywords

biomass, Science, Physics, QC1-999, semi-arid, Q, Environmental technology. Sanitary engineering, Caatinga, Environmental sciences, climate change, vegetation type, GE1-350, TD1-1066, biodiversity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
gold