Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Lincol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?

Authors: J.E. Overland; T.J. Ballinger; T. Vihma; M. Wang; X. Zhang; J. Cohen; J.A. Francis; +6 Authors

How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?

Abstract

Abstract Pronounced changes in the Arctic environment add a new potential driver of anomalous weather patterns in midlatitudes that affect billions of people. Recent studies of these Arctic/midlatitude weather linkages, however, state inconsistent conclusions. A source of uncertainty arises from the chaotic nature of the atmosphere. Thermodynamic forcing by a rapidly warming Arctic contributes to weather events through changing surface heat fluxes and large-scale temperature and pressure gradients. But internal shifts in atmospheric dynamics—the variability of the location, strength, and character of the jet stream, blocking, and stratospheric polar vortex (SPV)—obscure the direct causes and effects. It is important to understand these associated processes to differentiate Arctic-forced variability from natural variability. For example in early winter, reduced Barents/Kara Seas sea-ice coverage may reinforce existing atmospheric teleconnections between the North Atlantic/Arctic and central Asia, and affect downstream weather in East Asia. Reduced sea ice in the Chukchi Sea can amplify atmospheric ridging of high pressure near Alaska, influencing downstream weather across North America. In late winter southward displacement of the SPV, coupled to the troposphere, leads to weather extremes in Eurasia and North America. Combined tropical and sea ice conditions can modulate the variability of the SPV. Observational evidence for Arctic/midlatitude weather linkages continues to accumulate, along with understanding of connections with pre-existing climate states. Relative to natural atmospheric variability, sea-ice loss alone has played a secondary role in Arctic/midlatitude weather linkages; the full influence of Arctic amplification remains uncertain.

Country
United Kingdom
Keywords

polar vortex, F800 - Physical geographical sciences, 550, Science, QC1-999, 551, Environmental technology. Sanitary engineering, Arctic, extreme weather, F860 Climatology, tropical forcing, GE1-350, TD1-1066, Arctic amplification, Physics, Q, sea ice, Environmental sciences, climate change, jet stream

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%
Green
gold