
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics

Abstract Global terrestrial vegetation is greening, particularly in mountain areas, providing strong feedbacks to a series of ecosystem processes. This greening has been primarily attributed to climate change. However, the spatial variability and magnitude of such greening do not synchronize with those of climate change in mountain areas. By integrating two data sets of satellite-derived normalized difference vegetation index (NDVI) values, which are indicators of vegetation greenness, in the period 1982–2015 across the Tibetan Plateau (TP), we test the hypothesis that climate-change-induced greening is regulated by terrain, baseline climate and soil properties. We find a widespread greening trend over 91% of the TP vegetated areas, with an average greening rate (i.e. increase in NDVI) of 0.011 per decade. The linear mixed-effects model suggests that climate change alone can explain only 26% of the variation in the observed greening. Additionally, 58% of the variability can be explained by the combination of the mountainous characteristics of terrain, baseline climate and soil properties, and 32% of this variability was explained by terrain. Path analysis identified the interconnections of climate change, terrain, baseline climate and soil in determining greening. Our results demonstrate the important role of mountainous effects in greening in response to climate change.
- Auburn University United States
- CEA LETI France
- Département Sciences sociales, agriculture et alimentation, espace et environnement France
- French National Centre for Scientific Research France
- University of Paris-Saclay France
550, vegetation greenness, Science, QC1-999, mountainous effects, Environmental technology. Sanitary engineering, 333, Tibetan Plateau, GE1-350, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, TD1-1066, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, Physics, Q, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Environmental sciences, climate change, spatial variability, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment
550, vegetation greenness, Science, QC1-999, mountainous effects, Environmental technology. Sanitary engineering, 333, Tibetan Plateau, GE1-350, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, TD1-1066, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, Physics, Q, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Environmental sciences, climate change, spatial variability, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
