Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change

Authors: Felix Leung; Stephen Sitch; Amos P K Tai; Andrew J Wiltshire; Jemma L Gornall; Gerd A Folberth; Nadine Unger;

CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change

Abstract

Abstract Tropospheric ozone (O3) is harmful to plant productivity and negatively impacts crop yields. O3 concentrations are projected to decrease globally in the optimistic Representative Concentration Pathway of 2.6 W m–2 (RCP2.6) but increase globally following the high-emission scenario under the RCP8.5, with substantial implications for global food security. The damaging effect of O3 on future crop yield is affected by CO2 fertilization and climate change, and their interactions for RCP scenarios have yet to be quantified. In this study, we used the Joint UK Land Environment Simulator modified to include crops (JULES-crop) to quantify the impacts, and relative importance of present-day and future O3, CO2 concentration and meteorology on crop production at the regional scale until 2100 following RCP2.6 and RCP8.5 scenarios. We focus on eight major crop-producing regions that cover the production of wheat, soybean, maize, and rice. Our results show that CO2 alone has the largest effect on regional yields, followed by climate and O3. However, the CO2 fertilization effect is offset by the negative impact of tropospheric O3 in regions with high O3 concentrations, such as South Asia and China. Simulated crop yields in 2050 were compared with Food and Agriculture Organisation (FAO) statistics to investigate the differences between a socioeconomic and a biophysical process-based approach. Results showed that FAO estimates are closer to our JULES-crop RCP8.5 scenario. This study demonstrates that air pollution could be the biggest threat to future food production and highlights an urgent policy need to mitigate the threat of climate change and O3 pollution on food security.

Related Organizations
Keywords

Science, Physics, QC1-999, Q, crop yield, Environmental technology. Sanitary engineering, Environmental sciences, ozone, climate change, GE1-350, CO2 fertilization, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
gold