Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon storage and sequestration rates of trees inside and outside forests in Great Britain

Authors: Florian Zellweger; Sophie Flack-Prain; Joel Footring; Beccy Wilebore; Kathy J Willis;

Carbon storage and sequestration rates of trees inside and outside forests in Great Britain

Abstract

Abstract Efforts to abate climate change heavily rely on carbon sequestration by trees. However, analyses of tree carbon dynamics often neglect trees outside of forests (TOFs) and spatially detailed information about tree carbon sequestration rates are largely missing. Here we describe a new method which combines remote sensing with forest inventory data from 127 358 sites to first estimate tree age and site productivity, which we then used to estimate carbon storage and sequestration rates for all trees inside and outside forests across Great Britain. Our models estimate carbon storage and sequestration rates with R 2 values of 0.86 and 0.56 (root-mean-square errors of 70 tCO2e ha−1 and 3.4 tCO2e ha−1 yr−1). They also reveal the important finding that 17% (165.6 MtCO2e) of the total carbon storage and 21% (3.4 MtCO2e yr−1) of the total carbon sequestration rate of all trees in Great Britain come from TOF, with particularly high contributions in England (24.3% and 34.1%), followed by Wales (12.5% and 17.6%) and Scotland (2.6% and 1.8%). Future estimates of carbon status and fluxes need to account for the significant contributions of TOF because these trees, often found in field margins and hedgerows are potentially an important carbon offset. Our novel approach enables carbon baseline assessments against which changes can be assessed at management relevant scales, improving the means to measure progress towards net zero emissions targets and associated environmental policies.

Country
Switzerland
Related Organizations
Keywords

trees outside forests, Science, Physics, QC1-999, Q, tree carbon storage and sequestration, Environmental technology. Sanitary engineering, Environmental sciences, remote sensing, climate change, GE1-350, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold