Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate change-induced peatland drying in Southeast Asia

Authors: Nathan C Dadap; Alexander R Cobb; Alison M Hoyt; Charles F Harvey; Andrew F Feldman; Eun-Soon Im; Alexandra G Konings;

Climate change-induced peatland drying in Southeast Asia

Abstract

Abstract When organic peat soils are sufficiently dry, they become flammable. In Southeast Asian peatlands, widespread deforestation and associated drainage create dry conditions that, when coupled with El Niño-driven drought, result in catastrophic fire events that release large amounts of carbon and deadly smoke to the atmosphere. While the effects of anthropogenic degradation on peat moisture and fire risk have been extensively demonstrated, climate change impacts to peat flammability are poorly understood. These impacts are likely to be mediated primarily through changes in soil moisture. Here, we used neural networks (trained on data from the NASA Soil Moisture Active Passive satellite) to model soil moisture as a function of climate, degradation, and location. The neural networks were forced with regional climate model projections for 1985–2005 and 2040–2060 climate under RCP8.5 forcing to predict changes in soil moisture. We find that reduced precipitation and increased evaporative demand will lead to median soil moisture decreases about half as strong as those observed during recent El Niño droughts in 2015 and 2019. Based on previous studies, such reductions may be expected to accelerate peat carbon emissions. Our results also suggest that soil moisture in degraded areas with less tree cover may be more sensitive to climate change than in other land use types, motivating urgent peatland restoration. Climate change may play an important role in future soil moisture regimes and by extension, future peat fire in Southeast Asian peatlands.

Countries
United States, China (People's Republic of), China (People's Republic of), China (People's Republic of)
Keywords

550, Tropical peatland, neural network, Science, Physics, QC1-999, Q, SMAP, Environmental technology. Sanitary engineering, Neural network, Environmental sciences, climate change, Climate change, tropical peatland, GE1-350, Soil moisture, soil moisture, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold