Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/7n...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/ed...
Other literature type . 2024
Data sources: Datacite
UNC Dataverse
Article . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strong increase in mortality attributable to ozone pollution under a climate change and demographic scenario

زيادة قوية في الوفيات التي تعزى إلى تلوث الأوزون في ظل تغير المناخ والسيناريو الديموغرافي
Authors: Dimitris Akritidis; Sara Bacer; Prodromos Zanis; Aristeidis K. Georgoulias; Sourangsu Chowdhury; Larry W. Horowitz; Vaishali Naïk; +9 Authors

Strong increase in mortality attributable to ozone pollution under a climate change and demographic scenario

Abstract

Abstract Long-term exposure to ambient ozone (O3) is associated with excess respiratory mortality. Pollution emissions, demographic, and climate changes are expected to drive future ozone-related mortality. Here, we assess global mortality attributable to ozone according to an Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathway (SSP) scenario applied in Coupled Model Intercomparison Project Phase 6 (CMIP6) models, projecting a temperature increase of about 3.6 °C by the end of the century. We estimated ozone-related mortality on a global scale up to 2090 following the Global Burden of Disease (GBD) 2019 approach, using bias-corrected simulations from three CMIP6 Earth System Models (ESMs) under the SSP3-7.0 emissions scenario. Based on the three ESMs simulations, global ozone-related mortality by 2090 will amount to 2.79 M [95% CI 0.97 M–5.23 M] to 3.12 M [95% CI 1.11 M–5.75 M] per year, approximately ninefold that of the 327 K [95% CI 103 K–652 K] deaths per year in 2000. Climate change alone may lead to an increase of ozone-related mortality in 2090 between 42 K [95% CI −37 K–122 K] and 217 K [95% CI 68 K–367 K] per year. Population growth and ageing are associated with an increase in global ozone-related mortality by a factor of 5.34, while the increase by ozone trends alone ranges between factors of 1.48 and 1.7. Ambient ozone pollution under the high-emissions SSP3-7.0 scenario is projected to become a significant human health risk factor. Yet, optimizing living conditions and healthcare standards worldwide to the optimal ones today (application of minimum baseline mortality rates) will help mitigate the adverse consequences associated with population growth and ageing, and ozone increases caused by pollution emissions and climate change.

Keywords

Atmospheric sciences, Representative Concentration Pathways, Exposure Assessment, Health, Toxicology and Mutagenesis, population, Health Professions, Health Effects of Air Pollution, Coupled model intercomparison project, human health, Environmental technology. Sanitary engineering, Climate change, GE1-350, TD1-1066, Climatology, Geography, Ecology, Physics, Q, Geology, Pollution, excess mortality, climate change, Environmental health, Physical Sciences, General Health Professions, anthropogenic emissions, Medicine, Science, QC1-999, Population, Climate model, Environmental science, Ozone, Meteorology, Health Sciences, Biology, Impact of Climate Change on Human Health, FOS: Earth and related environmental sciences, Environmental sciences, ozone, FOS: Biological sciences, Environmental Science, Determinants of Health Care Expenditure and Longevity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold
Related to Research communities
Energy Research