Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article
License: CC BY
Data sources: Sygma
https://dx.doi.org/10.60692/7n...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/ed...
Other literature type . 2024
Data sources: Datacite
UNC Dataverse
Article . 2024
Data sources: Datacite
MPG.PuRe
Article . 2024
Data sources: MPG.PuRe
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strong increase in mortality attributable to ozone pollution under a climate change and demographic scenario

زيادة قوية في الوفيات التي تعزى إلى تلوث الأوزون في ظل تغير المناخ والسيناريو الديموغرافي
Authors: Dimitris Akritidis; Sara Bacer; Prodromos Zanis; Aristeidis K. Georgoulias; Sourangsu Chowdhury; Larry W. Horowitz; Vaishali Naïk; +9 Authors

Strong increase in mortality attributable to ozone pollution under a climate change and demographic scenario

Abstract

Abstract Long-term exposure to ambient ozone (O3) is associated with excess respiratory mortality. Pollution emissions, demographic, and climate changes are expected to drive future ozone-related mortality. Here, we assess global mortality attributable to ozone according to an Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathway (SSP) scenario applied in Coupled Model Intercomparison Project Phase 6 (CMIP6) models, projecting a temperature increase of about 3.6 °C by the end of the century. We estimated ozone-related mortality on a global scale up to 2090 following the Global Burden of Disease (GBD) 2019 approach, using bias-corrected simulations from three CMIP6 Earth System Models (ESMs) under the SSP3-7.0 emissions scenario. Based on the three ESMs simulations, global ozone-related mortality by 2090 will amount to 2.79 M [95% CI 0.97 M–5.23 M] to 3.12 M [95% CI 1.11 M–5.75 M] per year, approximately ninefold that of the 327 K [95% CI 103 K–652 K] deaths per year in 2000. Climate change alone may lead to an increase of ozone-related mortality in 2090 between 42 K [95% CI −37 K–122 K] and 217 K [95% CI 68 K–367 K] per year. Population growth and ageing are associated with an increase in global ozone-related mortality by a factor of 5.34, while the increase by ozone trends alone ranges between factors of 1.48 and 1.7. Ambient ozone pollution under the high-emissions SSP3-7.0 scenario is projected to become a significant human health risk factor. Yet, optimizing living conditions and healthcare standards worldwide to the optimal ones today (application of minimum baseline mortality rates) will help mitigate the adverse consequences associated with population growth and ageing, and ozone increases caused by pollution emissions and climate change.

Countries
Finland, United Kingdom, Norway, Norway
Keywords

Atmospheric sciences, Representative Concentration Pathways, Exposure Assessment, Health, Toxicology and Mutagenesis, population, Health Professions, Health Effects of Air Pollution, Coupled model intercomparison project, human health, Environmental technology. Sanitary engineering, Climate change, GE1-350, TD1-1066, Climatology, Geography, Ecology, Physics, Q, Geology, Pollution, excess mortality, climate change, Environmental health, Physical Sciences, General Health Professions, anthropogenic emissions, Medicine, Science, QC1-999, Population, Climate model, Environmental science, Ozone, Meteorology, Health Sciences, Biology, CMIP6, 500, Impact of Climate Change on Human Health, FOS: Earth and related environmental sciences, Environmental sciences, ozone, FOS: Biological sciences, Environmental Science, Determinants of Health Care Expenditure and Longevity

Powered by OpenAIRE graph
Found an issue? Give us feedback