Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

Projection of the precipitation-induced landslide risk in China by 2050

Authors: orcid Shilong Ge;
Shilong Ge
ORCID
Harvested from ORCID Public Data File

Shilong Ge in OpenAIRE
orcid bw Jun Wang;
Jun Wang
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Jun Wang in OpenAIRE
Chao Jiang;

Projection of the precipitation-induced landslide risk in China by 2050

Abstract

Abstract China is highly susceptible to landslides and debris flow disasters as it is a mountainous country with unique topography and monsoon climate. In this study, an efficient statistical model is used to predict the landslide risk in China under the Representative Concentration Pathway 8.5 by 2050, with the precipitation data from global climate models (GCMs) as the driving field. Additionally, for the first time, the impact of future changes in land use types on landslide risk is explored. By distinguishing between landslide susceptibility and landslide risk, the results indicate that the landslide susceptibility in China will change in the near future. The occurrence of high-frequency landslide risks is concentrated in southwestern and southeastern China, with an overall increase in landslide frequency. Although different GCMs differ in projecting the future spatio-temporal distribution of precipitation, there is a consensus that the increased landslide risk in China’s future is largely attributed to the increase in extremely heavy precipitation. Moreover, alterations in land use have an impact on landslide risk. In the Huang-Huai-Hai Plain, Qinghai Tibet Plateau, and Loess Plateau, changes in land types can mitigate landslide risks. Conversely, in other areas, such changes may increase the risk of landslides. This study aims to facilitate informed decision-making and preparedness measures to protect lives and assets in response to the changing climate conditions.

Related Organizations
Keywords

extreme precipitation, Science, Physics, QC1-999, Q, landslides projection, Environmental technology. Sanitary engineering, Environmental sciences, climate change, HighResMIP, GE1-350, land use cover change, TD1-1066

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold