
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Projection of the precipitation-induced landslide risk in China by 2050


Shilong Ge

Jun Wang
Abstract China is highly susceptible to landslides and debris flow disasters as it is a mountainous country with unique topography and monsoon climate. In this study, an efficient statistical model is used to predict the landslide risk in China under the Representative Concentration Pathway 8.5 by 2050, with the precipitation data from global climate models (GCMs) as the driving field. Additionally, for the first time, the impact of future changes in land use types on landslide risk is explored. By distinguishing between landslide susceptibility and landslide risk, the results indicate that the landslide susceptibility in China will change in the near future. The occurrence of high-frequency landslide risks is concentrated in southwestern and southeastern China, with an overall increase in landslide frequency. Although different GCMs differ in projecting the future spatio-temporal distribution of precipitation, there is a consensus that the increased landslide risk in China’s future is largely attributed to the increase in extremely heavy precipitation. Moreover, alterations in land use have an impact on landslide risk. In the Huang-Huai-Hai Plain, Qinghai Tibet Plateau, and Loess Plateau, changes in land types can mitigate landslide risks. Conversely, in other areas, such changes may increase the risk of landslides. This study aims to facilitate informed decision-making and preparedness measures to protect lives and assets in response to the changing climate conditions.
- Chinese Academy of Sciences China (People's Republic of)
- Beijing Forestry University China (People's Republic of)
- Beijing Forestry University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
extreme precipitation, Science, Physics, QC1-999, Q, landslides projection, Environmental technology. Sanitary engineering, Environmental sciences, climate change, HighResMIP, GE1-350, land use cover change, TD1-1066
extreme precipitation, Science, Physics, QC1-999, Q, landslides projection, Environmental technology. Sanitary engineering, Environmental sciences, climate change, HighResMIP, GE1-350, land use cover change, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
