Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2024
Data sources: MPG.PuRe
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2024
License: CC BY
https://dx.doi.org/10.48350/19...
Other literature type . 2024
Data sources: Datacite
Research Collection
Article . 2024
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate policies for carbon neutrality should not rely on the uncertain increase of carbon stocks in existing forests

Authors: Caspar TJ Roebroek; Luca Caporaso; Ramdane Alkama; Gregory Duveiller; Edouard L Davin; Sonia I Seneviratne; Alessandro Cescatti;

Climate policies for carbon neutrality should not rely on the uncertain increase of carbon stocks in existing forests

Abstract

Abstract The international community, through treaties such as the Paris agreement, aims to limit climate change to well below 2 °C, which implies reaching carbon neutrality around the second half of the century. In the current calculations underpinning the various roadmaps toward carbon neutrality, a major component is a steady or even expanding terrestrial carbon sink, supported by an increase of global forest biomass. However, recent research has challenged this view. Here we developed a framework that assesses the potential global equilibrium of forest biomass under different climate change scenarios. Results show that under global warming carbon storage potential in forest aboveground biomass gradually shifts to higher latitudes and the intensity of the disturbance regimes increases significantly almost everywhere. CO2 fertilization stands out as the most uncertain process, with different methods of estimation leading to diverging results by almost 155 PgC of above ground biomass at equilibrium. Overall, assuming that the sum of human pressures (e.g. wood extraction) does not change over time, that total forest cover does not change significantly and that the trend in CO2 fertilisation as it is currently estimated from satellite proxy observations remains, results show that we have reached (or are very close to reaching) the peak of global forest carbon storage. In the short term, where increased disturbance regimes are assumed to act quicker than increased forest growth potential, global forests might instead act as a carbon source, that will require even more effort in decarbonization than previously estimated. Therefore, the potential of forests as a nature-based solution to mitigate climate change brings higher uncertainties and risks than previously thought.

Countries
Italy, Switzerland, Switzerland
Keywords

530 Physics, Science, Physics, QC1-999, Q, NbS, Climate policies, Forest, Machine Learning, 000 Computer science, knowledge & systems, carbon storage, Environmental technology. Sanitary engineering, climate change mitigation, Environmental sciences, climate change, carbon cycle, GE1-350, climate change; nature-based solutions; carbon storage; carbon cycle; climate change mitigation, 550 Earth sciences & geology, TD1-1066, nature-based solutions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold
Related to Research communities
Energy Research