
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of electrode processing and electrolyte composition on multiwall carbon nanotube negative electrodes for sodium ion batteries

handle: 10023/26934
Abstract Nanostructured one-dimensional multiwall-carbon nanotubes have a variety of advantageous properties including good electrical conductivity and mechanical strength, and thus have been widely investigated for use in lithium-ion battery electrodes as conductive and microstructural additives, though they also possess some electrochemical activity. Their application to sodium-ion batteries has been less extensively researched, and therefore a greater understanding of the electrochemical reaction with sodium, and effects of slurry composition and electrolyte formulation is warranted, especially as these are likely components in future Na-ion electrode formulations. Here, we report the fabrication of aqueous and organic multi-wall carbon nanotube (MWCNT) negative electrodes processed by ball milling. The binder of choice is noted to greatly affect the electrochemical performance, both in terms of capacity retention and rate capability over a range of current densities from 25 to 500 mA g−1. Switching from a carbonate- to diglyme-based electrolyte considerably improves initial coulombic efficiencies (∼10%–60%), attributed to less extensive formation of solid electrolyte interphase, and enables a reversible mechanism with capacities up to 150 mAh g−1 over 100 cycles depending upon the binder used. Ex-situ characterization of the discharged and cycled carbon nanotubes by powder x-ray diffraction, transmission electron microscopy and Raman spectroscopy provide an insight into how MWCNTs undergo sodiation and demonstrate a partially reversible structural transformation during cycling when using the diglyme-based electrolyte. This work lays the foundation for a better understanding of these versatile materials, especially when used in the most promising alternative energy storage technology to lithium ion.
- University of St Andrews United Kingdom
- The Faraday Institution United Kingdom
- University of St Andrews United Kingdom
- University of Edinburgh United Kingdom
TK1001-1841, Carbon nanotubes, Negative electrodes, TJ807-830, electrolytes, Renewable energy sources, Electrolytes, Production of electric energy or power. Powerplants. Central stations, Binders, SDG 7 - Affordable and Clean Energy, Sodium-ion batteries, MCC, carbon nanotubes, 600, DAS, negative electrodes, MCP, sodium-ion batteries, binders
TK1001-1841, Carbon nanotubes, Negative electrodes, TJ807-830, electrolytes, Renewable energy sources, Electrolytes, Production of electric energy or power. Powerplants. Central stations, Binders, SDG 7 - Affordable and Clean Energy, Sodium-ion batteries, MCC, carbon nanotubes, 600, DAS, negative electrodes, MCP, sodium-ion batteries, binders
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
