
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Elastocaloric effect of shape memory polymers in elastic response regime

Abstract Solid-state cooling/heating technology based on the elastocaloric effect is one of the promising alternatives to vapor compression systems. Large elastocaloric temperature modulation is often generated through the non-linear strain-induced structural transition by applying large strain and/or stress to ferroelastic materials. Recently, an unconventional approach to expand the application possibilities of the elastocaloric effect was demonstrated by processing elastocaloric materials into kirigami structures, which was inspired by the art of paper cutting. Using this approach, only a small stretch of processed conventional plastics can locally provide more efficient performance of elastocaloric temperature modulation than that of ferroelastic materials. To further improve such a unique functionality, it is necessary to find plastic or polymeric materials showing large elastocaloric effects in the linear elastic response regime that can be driven by a MPa-order weak stress application, where the non-linear structural transition is irrelevant. In this work, by means of a recently developed measurement technique for the elastocaloric effect based on the lock-in thermography, we found that shape memory polymers (SMPs) show prominent performance for elastocaloric temperature modulation that is larger than conventional plastics. SMPs enable the control of crystallinity by changing the cross-linking agents, melting temperature by changing the degree of polymerization, and orientation of the polymer chain segment by the shape memory effect. By utilizing the unique properties of SMPs, we manipulated their elastocaloric performance. The experimental results reported here will highlight the potential of smart polymers for flexible and durable elastocaloric applications.
TK1001-1841, TJ807-830, elastic deformation, Renewable energy sources, shape memory polymer, lock-in thermography, Production of electric energy or power. Powerplants. Central stations, elastocaloric effect, cross-linking
TK1001-1841, TJ807-830, elastic deformation, Renewable energy sources, shape memory polymer, lock-in thermography, Production of electric energy or power. Powerplants. Central stations, elastocaloric effect, cross-linking
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
