
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photochemical reactions and the self-depuration of sunlit freshwaters

handle: 2318/1945311
Abstract Reactions induced by sunlight (direct photolysis and indirect photochemistry) are important ecosystem services that aid freshwater bodies in removing contaminants, although they may also exacerbate pollution in some cases. Without photoinduced reactions, pollution problems would be considerably worse overall. The photochemical reaction rates depend on seasonality, depth, water chemistry (which also significantly affects the reaction pathways), and pollutant photoreactivity. Photochemical reactions are also deeply impacted by less studied factors, including hydrology, water dynamics, and precipitation regimes, which are key to understanding the main impacts of climate change on surface-water photochemistry. Climate change is expected in many cases to both exacerbate freshwater pollution, and enhance photochemical decontamination. Therefore, photochemical knowledge will be essential to understand the future evolution of freshwater environments.
- University of Turin Italy
pollutant fate, Ecology, photoinduced processes, climate change, contaminant attenuation, QH540-549.5
pollutant fate, Ecology, photoinduced processes, climate change, contaminant attenuation, QH540-549.5
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
