Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Ecology
Article . 2022 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants

Authors: Génesis Parada-Pozo; León A Bravo; Patricia L Sáez; Lohengrin A Cavieres; Marjorie Reyes-Díaz; Sebastián Abades; Fernando D Alfaro; +2 Authors

Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants

Abstract

Abstract In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species—Deschampsia antarctica and Colobanthus quitensis—potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.

Country
Chile
Keywords

570, soil microorganisms, 15 Vida de ecosistemas terrestres, Bacteria, Microbiota, 15 Life on Land, Antarctic Regions, global warming, vegetation cover, 630, Soil, climate change, Rhizosphere, Antarctica, Soil Microbiology, plant rhizosphere

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
hybrid